Glutathione: interorgan translocation, turnover, and metabolism.

نویسندگان

  • O W Griffith
  • A Meister
چکیده

Glutathione is translocated out of cells; cells that have membrane-bound gamma-glutamyl transpeptidase can utilize translocated glutathione, whereas glutathione exported from cells that do not have appreciable transpeptidase enters the blood plasma. Glutathione is removed from the plasma by the kidney and other organs that have transpeptidase. Studies in which mice and rats were treated with buthionine sulfoximine, a selective and potent inhibitor of gamma-glutamylcysteine synthetase and therefore of glutathione synthesis, show that glutathione turns over at a significant rate in many tissues, especially kidney, liver, and pancreas; the rate of turnover in mouse skeletal muscle is about 60% of that in the kidney. Experiments on rats surgically deprived of one or both kidneys and treated with the gamma-glutamyl transpeptidase inhibitor D-gamma-glutamyl-(o-carboxy)phenylhydrazide establish that extrarenal gamma-glutamyl transpeptidase activity accounts for the utilization of about one-third of the total blood plasma glutathione. Normal animals treated with the transpeptidase inhibitor excrete large amounts of glutathione in their urine. They also excrete gamma-glutamylcysteine, suggesting that cleavage of glutathione at the cysteinylglycine bond may be of metabolic significance. The present and earlier findings lead to a tentative scheme (presented here) for the metabolism and translocation of glutathione, gamma-glutamyl amino acids, and related compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Approach to Estimate Interorgan Metabolic Transport in a Mammal

In multicellular organisms metabolism is distributed across different organs, each of which has specific requirements to perform its own specialized task. But different organs also have to support the metabolic homeostasis of the organism as a whole by interorgan metabolite transport. Recent studies have successfully reconstructed global metabolic networks in tissues and cell types and attempts...

متن کامل

Role of cardiac glutathione transferase and of the glutathione S-conjugate export system in biotransformation of 4-hydroxynonenal in the heart.

There is a remarkable difference in the isozyme pattern between cardiac and hepatic glutathione S-transferases in rat (Ishikawa, T., and Sies, H. (1984) FEBS Lett. 169, 156-160), and one near-neutral isozyme (pI = 6.9) of the cardiac glutathione S-transferases was found to have a significantly high activity toward 4-hydroxynonenal. The isozyme was inhibited by the resulting glutathione S-conjug...

متن کامل

Interorgan exchange of aminothiols in humans.

In the present study, we used organ balance across the kidney, splanchnic organs, and lower limb in subjects undergoing diagnostic central venous catheterizations to gain insight into the renal and extrarenal exchange of aminothiols in humans. Although Hcy was released only in low amounts from leg tissues, Cys-Gly (a peptide derived from GSH hydrolysis) was released by both the leg and splanchn...

متن کامل

Renal metabolism of amino acids: its role in interorgan amino acid exchange.

The kidneys play a role in the synthesis and interorgan exchange of several amino acids. The quantitative importance of renal amino acid metabolism in the body is not, however, clear. We review here the role of the kidney in the interorgan exchange of amino acids, with emphasis on quantitative aspects. We reviewed relevant literature by using a computerized literature search (PubMed) and checki...

متن کامل

Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 76 11  شماره 

صفحات  -

تاریخ انتشار 1979